
Debugging and Profiling

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Debugging

Printf debugging and Logging

"The most effective debugging tool is still careful thought, coupled with
judiciously placed print statements" — Brian Kernighan, Unix for Beginners.

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Approaches for Debugging

1. Add print statements around the problem area

2. Use logging instead of ad hoc print statements

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Why Logging?

Log to files, sockets, or remote servers

Supports severity levels (INFO, DEBUG, WARN, ERROR, etc.)

Logs can contain information for new issues

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Example Code for Logging

$ python logger.py
$ python logger.py log
$ python logger.py log ERROR
$ python logger.py color

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Coloring Logs

Terminals use colors for readability

Uses ANSI escape codes

Example for color coding: echo -e "\e[38;2;255;0;0mThis is red\e[0m"

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://en.wikipedia.org/wiki/ANSI_escape_code
https://missing.csail.mit.edu/

Script for Printing RGB Colors

#!/usr/bin/env bash
for R in $(seq 0 20 255); do
 for G in $(seq 0 20 255); do
 for B in $(seq 0 20 255); do
 printf "\e[38;2;${R};${G};${B}m█\e[0m";
 done
 done
done

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Third Party Logs

Dependencies such as web servers and databases generate their own logs

Logs are often stored under /var/log in UNIX systems

Use systemd or log show on macOS to view system logs

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Using logger for System Logs

logger "Hello Logs"
log show --last 1m | grep Hello
journalctl --since "1m ago" | grep Hello

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Debuggers

Allows interaction with program execution

Features: halt, step through, inspect variables, set breakpoints

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Python Debugger (pdb)

l(ist)

s(tep)
n(ext)

b(reak)

p(rint)

r(eturn)
q(uit)

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Buggy Python Code Example

def bubble_sort(arr):
 # ... buggy code ...
 return arr

print(bubble_sort([4, 2, 1, 8, 7, 6]))

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Specialized Tools

Tools for debugging black box binaries
Tracing system calls with strace or dtrace

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Using strace or dtruss

sudo strace -e lstat ls -l > /dev/null
sudo dtruss -t lstat64_extended ls -l > /dev/null

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Profiling

Timing

Measure time between code points

Difference between Real, User, and Sys time

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Python Timing Example

import time, random

start = time.time()
... some work ...
print(time.time() - start)

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Profilers

CPU Profilers

Tracing vs Sampling profilers

cProfile in Python for function call profiling

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Python cProfile Example

$ python -m cProfile -s tottime grep.py

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Line Profilers

Shows time taken per line of code
Example with line_profiler

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://github.com/pyutils/line_profiler
https://missing.csail.mit.edu/

Memory Profilers

Identify memory leaks with tools like Valgrind

Use memory profiler for languages like Python

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://valgrind.org/
https://missing.csail.mit.edu/

Python Memory Profiler Example

@profile
def my_func():
 # ... code ...
 return a

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Event Profiling

Black box profiling with perf

Reports system events related to programs

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://www.man7.org/linux/man-pages/man1/perf.1.html
https://missing.csail.mit.edu/

Visualization

Flame Graphs for hierarchy of function calls

Call graphs for function relationships

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Resource Monitoring

htop , iotop , df , du , free , lsof , ss , nethogs

Artificial loads with stress

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://linux.die.net/man/1/stress
https://missing.csail.mit.edu/

Specialized tools

Black box benchmarking with hyperfine

Profiling webpage loading with browser developer tools

Computer Science and Security: The Missing Course

https://missing.csail.mit.edu/

https://github.com/sharkdp/hyperfine
https://missing.csail.mit.edu/

